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Damage-spreading dynamic scaling for the Ising model on the Sierpinski gasket fractal
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We study the relaxation towards equilibrium of the ferromagnetic Ising model on the Sierpinski gasket,
which is a fractal lattice. We do this by performing Monte Carlo simulations, based on the heat-bath dynamics,
and investigating the time evolution of the Hamming distance between two different configurations of the
model. Starting with an initial damage created in all lattice sites, we calculate the average values of two
guantities that characterize the relaxation process: the nonlinear damage relaxatior) tiarel(the time for
all sites to be undamaged at least oneg) (We find thatr diverges, at low temperatures, with a dynamical
exponentz which depends linearly on the inverse of temperature, as predicted by a generalized scaling theory
developed by Henley. There is a complete breakdown of scaling.for

PACS numbsefs): 64.60.Ak, 64.60.Ht, 05.16-a

[. INTRODUCTION on fractal systems related to the damage-spreading analysis
(see, for example, Ref$13—24)). This method consists of
In the numerical simulation of model systems, one mainmonitoring the simultaneous time evolution of two initially
question concerns the relaxation tims (ecessary to drive different microscopic configurations of the model and mea-
the system to a set of microscopic configurations charactesuring the fraction of corresponding sites where the spin
izing the thermodynamical equilibrium. This timeis re-  Vvariables are in different states. This fraction defines the total
lated to the correlation lengthe) through 7~ &, wherezis ~ damage. It is known that several model systems present a
a dynamic scaling exponeft]. According to the standard dynamic phase transition, separating a chaotic regidrere
scaling theory, we expeetto be a function of several aspects the damage remains finjtand a frozen onéwhere the dam-
of the model, such as symmetries and lattice dimensionalitpge heals Here, we will be particularly interested in study-
but insensible to temperature changes. ing the scaling behavior of the damage relaxation and dam-
However, experimental results on percolation clusigfs age covering times and exploring their relationship with the
seem to suggest that for models defined on fractal substraté@eneralized scaling theory. Our numerical results show that,
with a Vanishing critical temperaturelcomd also be tem- although the damage relaxation time follows the generalized
perature dependent. This has stimulated further develoglynamic scaling, the damage covering time depicts a loga-
ments(such as generalized scaling theg8y4]), which pre-  rithmic size dependence and therefore violates the dynamical
dicts that for low temperatures<T !, due to a logarithmic ~ scaling.
size dependence of energy barriers. However, a renormaliza-
tion group analysi$5] found z to be independent of. The || GENERALIZED SCALING FOR FRACTAL LATTICES
dynamical scaling behavior of model systems defined on . ) ] ]
fractal substrates of zero critical temperature has been inves- The generalized scaling, as applied to the Ising model on
tigated[6,7] in the Ising model defined on the Sierpinski & fractal lattice, is based on the fact that the relaxation time
gasket, where the thermodynamic behavior can be exactlf{L.T) of a system of linear sizé at a temperaturd is
obtained [8]. This model presents interesting nontrivial determined by an Arrhenius law
physical properties, mainly those concerned with its extrapo-
lation to the thermodynamic limit. Monte Carlo simulations (L, T)=7oexd AE(L)/kgT], (1)
results seem to confirm the generalized scaling theory for
thermodynamic quantities with some reported quantitativavherer, is a time scale constant aid=(L ) is the minimal
deviations from the theoretically predicted coefficiefith energy barrier that the system needs to flip from all spins up
Recently, there has been a renewed interest in the study & all spins dowr{3,4,6,7. Generalized scaling assumes that
the dynamical behavior of model systems defined on fracta® local quantity like the magnetizatiovi has to be dynami-
objects. The concept of self-organized criticality has pro-cally scaled as
vided a link between the widespread occurrence in nature of
fractal structures and the phenomenon df idise[9]. Sev- M(L,T,t)=M(L/b, T",t/Q)). (2
eral dynamical properties of fractal systems such as the
random-walk scaling laws, reaction kinetics, and vibrationalTherefore, we have to rescale the time scale by a fd@tor
excitations, among others, have been shown to depict newhen the size of the lattice is rescaled by a fadioiThe
features not present on regular Euclidean lattjd€s-12. renormalized temperatui® can be determined by a scaling
Here, we study some important aspects of spin dynamicgansformation procedure].
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FIG. 2. Semilogarithmic plot of thelamage(thicker ling and
magnetizatiorvs time (in MCS). Notice that the signal of the dam-
age is more stable than that of theagnetizationIn this case, the
damage is more reliable for statistics due to fewer fluctuations.

FIG. 1. Sierpinski gasket with four generations. The baseline

sites are numbered in such a way that the central one has site in
1S=0.

Henley showed3,4] that the characteristic energy differ-
enceAE is given by

AE(L)/2J~ZInL+C, 3)

dex

H

-3, SS,
(L))

@)

whereJ>0 and(i,j) denotes nearest-neighbor sites on the
Sierpinski gasket, as illustrated in Fig. 1. On this lattice, the
geometric factorZ=2/In2 andC=4. The thermodynamic

properties of this system can be obtained numerically by

where Z is a constant that characterizes the fractal. ThedmpPlementing a standard Monte Carlo algorithm with spe-

putting Eq.(3) into Eq. (1), the leading behavior for low
temperatures L(<¢) becomesr(L,T)~roL??K, where K

=J/kgT is the coupling constant. To reproduce the abov
predicted behavior, the generalized scaling requires the ma

netization to present the dynamic scaling form in EB),
with the rescaling of the relaxation time satisfying

7(L,K)=Q(b,K)7(L/b,K"). (4)

Note that the temperature dependence of the rescaling fact
Q) characterizes the basic difference between ordinary an

generalized dynamic scalings. Further, to reproduce the c
rect low temperature behavior, the following ansdiz
=b'® is assumed, where the functié(K) has the simple
low-temperature form

f(K)=apK+a;+0(1/K). (5)
Takingb=L it is obtained that
(L, K)=Q(L,K)7'(1K"), (6)

resulting in the leading behaviai(L,K)~L2X, Hence, the
linear coefficient off (k) is related to the geometric facta@r
by a0: 22

To calculate the value ody, we measuré€)=7/7', con-
sidering systems of different sizes and temperatur@s) is
obtained by making the best linear fit to the plot of Jéy
versuskK, in the limit of K—oo.

IIl. MODEL AND FORMALISM

cific dynamical rules. In what follows, we will investigate,
through a damage-spreading technique, some aspects related
do the relaxation to equilibrium when it is driven by a heat-
S?)_ath dynamics. The damage technique is introduced as fol-
ows: we take two system configuratiods and B which
differ from each other by a given set of spins which are put
in distinct states. The simultaneous temporal evolution of the
two copies is performed using the same Monte Carlo rules
and the same random numbéisr the same sites on lattices
&andB). The Hamming distance is a measure of the damage
and is defined as the fraction of sites which have different

0P_pin orientations on system configuratiohgndB, i.e.,

D(t)=

1
m<2i |S.A(t>—aB<t>|>, ®

whereN is the total number of sites and the brackets stand
for an average over many samplégferent initializations of
the random number generator

The present Monte CarlMC) simulation has started
with lattices of size. (ranged fromL =4 toL=128) at some
couplingK with all spins up in copyA and down in copyB,
corresponding to an initial damade(0)=1. We recorded
the damage per site as a function of tihewhere each
Monte Carlo step per spitMCS) represents a unit of time.
We have also averaged over until*16xperiments, using
free boundary conditions in order to avoid the breakdown of
hierarchy of the lattice. As this model is paramagnetic at any
finite temperature, the asymptotic equilibrium value of the
damage is zeréfrozen phase We investigate its relaxation
properties by calculating two quantities: the nonlinear dam-
age relaxation timg¢r= [§D(t)dt], and the time for all sites

The Hamiltonian of the Ising ferromagnet model with to be undamaged at least oneg)( It should be stressed that

nearest-neighbor interactions is

the damage-spreading technique has been successfully used



PRE 61 DAMAGE-SPREADING DYNAMIC SCALING FOR THE . .. 1229

106 : : 4.5
5
4
4 v}
10" - 1 G, g °
o)
w ©35| %7 0505 1 11 B°
2 8 v
107 r 1 3 @@
@@
° ‘ s . 25
10 0.4 0.5 0.6 0.7 0.8 0.9
0.20 0.40 0.60 0.80 K

K
_ o o ) FIG. 5. Plot of logQ) vs K from L=8 to L'=4 (circles and
FIG. 3. Semlloganthmlc plot of the relaxation time vs inverse from L= 16 toL’ =8 (squaresrenormalizations. The solid line is a
temperature for three different valueslofL =4,8,16). The curves fitting for the nonlinear functionf(K)=a,K+a;+a,/K, where

show that the slope of logvs K depends ori for low tempera-  3,=27. The best fit gives the values af=5.7+0.1, a;= —2.2
tures. In this case is a power law of the formr~ L3, +0.2 anda,=1.1+0.1.

to determine the dynamical critical exponenof the two-  jng for largeL as expected in the limit> ¢, where 7 &2,
and three-dimensional Ising modé2,25|. After calculatingr for a system of siz& at a couplingk
the same procedure is repeated now#0in a system of size
IV. RESULTS L'=L/b but at a coupling’, calculated by a renormaliza-

For simplicity, in all our results we will considel=kg tion procedure wittb=2 [8] given by

=1. In Fig. 2, we plot the time evolution of the damage and _
the magnetization. This figure shows that the magnetization exp4K')= eXPBK) — exp4K) +4
fluctuations are larger when compared with that of the dam- exp4K)+3
age, which presents a much smoother behavior making it o . )
possible to get reasonably good statistical results. Besides, in 1he renormalization factd? is calculated by the relation
contrast with the magnetization, the damage becomes zero§#=7/7', wherer and 7' are the relaxation times in each of
we wait enough time, and remains null. We recall that, as thé1€ correspondent systems. A plot of jéy versusk appears
system presents no phase transitiercept forT=0 andL N Fig. 5 for renormalizations of systems with=42 (L
— ), only an exponential decay is observed. =8) toN’=15 spins {'=4) and withN=123 (L=16) to
Figure 3 shows the relaxation timeas a function ok ~ N'=42 spins {"=8). The data collapse and the tempera-
(inverse temperatuyefor three different values of. These ture dependence of lg@ reinforces the validity of the gen-
curves show that the slopes of legersusk slowly grows ~ €ralized scaling hypothesis. This figure is to be compared
with L for low temperatures, confirming the predicted trend.With Fig. 5 of Ref.[7]. Looking closely, our result suggests
For high temperatureiow K) the slopes appear to be the that in the range of temperatures mvesngated,Katﬁa/(m in
same. Figure 4 shows the relaxation timas a function ot. the f_(K) expansion seems to be a relevant correction to the
for different temperatures.For low temperaturés<() the leading linear behavior. We fit the data to the expression
data is consistent with the assumed dominant power-law be-
havior 7=LZ? with a temperature dependent exponent. When f(K)=aoK+a; +a,/K, (10
L is increased, a downward curvature appears wisaturat-

9

finding that the best nonlinear fit gives a valueagf=5.7

10° +0.1, which is in better agreement with Henley’s result
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FIG. 4. Relaxation timer vs L for different values ofT. We

observe two regimes: a high temperature one, whesaturates, FIG. 6. Average timdin MCS) for each site of lattice base line
and a low temperature one, where the curve seems to agree with(a=16) to be undamagedhealed. From bottom to top:T
power law. =15, 14, 1.3, and 1.2.
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FIG. 7. Average timdin MCS) for each site of the lattice base
line (L=4,8,16,32 from the inside to the outsjde be undamaged FIG. 9. Semilogarithmic plot of the covering time against in-
(healed. Curves have been calculated B+1.2 and have been verse temperature for three different valued ¢f =4,8,32). These
averaged over TOsamples. curves show that the slope of lagvs K does not depend oin.

shown in Fig. 9. From these curves, we observe that the

(ap)n=4/In2=5.77, than the former ona,=4.2 obtained slope of logr, versusK is not L dependent contrary to the
from a crude linear fit in the same temperature rafe behavior ofr (see Fig. 3. The results in Figs. 8 and 9 indi-

To have more insight into the system dynamics we haveate thatr, is not a power law, as observed for the relaxation
also examined another characteristic time of evolution of thaime 7 in the low temperature regime. The logarithmic size
damage ) defined as the time for all sites to be undam-dependence of the damage covering time is similar to the one
aged at least onde6]. To investigate the scaling properties observed to hold for the energy barriers.
of 7., we proceed in the same way done focalculating Figure 10 shows the logarithm plot 61 versusK for
now Q. from 7, and 7. three different renormalizationsL(L'=32/16, 16/8, and

Figure 6 shows the average tirtie MCS) for each site of ~ 8/4). In contrast with the results obtained from the relaxation
the lattice base line to be undamadedhealed at least once time, the scaling factor of the damage lattice covering time
(for L=16). We notice that, when the temperature is de-r. appears to depend not only ¢handb but also on the
creased, we have at least four well distinguishable characteproper system sizk. In other words. does not satisfy the
istic time scales. These curves have been averaged for 1@eneralized dynamic scaling, specially in the low tempera-
samples. The corners of the gasket very soon become umure regime where the difference of the characteristic damage
damaged, as expected, since the sites at the corners are legvering time scales is more proeminent. It is interesting to
stable to fluctuations. From the fourth spin on, in the direcotice that all curves show that there is a crossover around
tion to the center of the gaskéfrom the left or from the T=2. This temperature is close to a characteristic tempera-
right), all spins become undamaged at the same time scaleure of the system that has been reported some tim¢2i6o
In Fig. 7 we show ther, base line profile for distinct sizes. It which relates to the maximum of the specific heat of this
shows that the existence of four time scales persists foLany system (Schottky peak anomalyoccurring at T=2J/K.
with the inner sitegi|<L/2—3 being undamaged almost at Similar results[28] were found for the Ising model on the
the same time despite a small regular oscillation. The preshree-dimensional Sierpinski gasket wifl=3J/K.
ence of distinct characteristic times scales is a signature of a
possible scaling violation. V. CONCLUSION

Figure 8 shows the total covering time/InL versusL.
All curves saturate on a constant value showing that there ig.
only one regime withr, growing with InL for all T. The :
semilog plot of 7, against the inverse of temperature is 25 .

We have studied the spin dynamics on a fractal lattiice
erpinski gasketthrough a Monte Carlo damage spreading

c—0T=2.0
3 | =—aT=15
10 o—0T=1.3

T, /InL

10", 5 5 " s
L FIG. 10. Semilogarithm plot of).=7./7, vs K for three dif-
ferent renormalizationsL(L’=32/16, 16/8, and 8/4). The system
FIG. 8. Log-log plot of ¢./logL) vs L. They saturate a§ shows no scaling of. especially for low temperatures. All curves
—o showing thatr. grows with logL for all T. show that there is a crossover arounhe 2.
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technique using heat-bath dynamics. The damage relaxatimtale invariant systems. At present we are investigating the
time was found to follow a generalized dynamic scaling asvalidity of this conjecture on fractal lattices that present a
proposed by Henle}3,4]. Accurate data for the renormaliza- finite critical temperature for which a standard dynamic scal-
tion scaling factor of the relaxation time provide a preciseing of the relaxation time is expected to hold.

estimate oz=ayK, with a;=>5.7+0.1 in agreement with the

scaling prediction and substantially t_)etter .than previous ACKNOWLEDGMENTS

Monte Carlo results. Further, we also investigated the total

damage covering time, which was found not to obey a scal- We acknowledge Heber R. da Cruz and G.M.
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