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Damage-spreading dynamic scaling for the Ising model on the Sierpinski gasket fractal
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We study the relaxation towards equilibrium of the ferromagnetic Ising model on the Sierpinski gasket,
which is a fractal lattice. We do this by performing Monte Carlo simulations, based on the heat-bath dynamics,
and investigating the time evolution of the Hamming distance between two different configurations of the
model. Starting with an initial damage created in all lattice sites, we calculate the average values of two
quantities that characterize the relaxation process: the nonlinear damage relaxation time (t), and the time for
all sites to be undamaged at least once (tc). We find thatt diverges, at low temperatures, with a dynamical
exponentz which depends linearly on the inverse of temperature, as predicted by a generalized scaling theory
developed by Henley. There is a complete breakdown of scaling fortc .

PACS number~s!: 64.60.Ak, 64.60.Ht, 05.10.2a
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I. INTRODUCTION

In the numerical simulation of model systems, one m
question concerns the relaxation time (t) necessary to drive
the system to a set of microscopic configurations charac
izing the thermodynamical equilibrium. This timet is re-
lated to the correlation length (j) throught;jz, wherez is
a dynamic scaling exponent@1#. According to the standard
scaling theory, we expectz to be a function of several aspec
of the model, such as symmetries and lattice dimensiona
but insensible to temperature changes.

However, experimental results on percolation clusters@2#
seem to suggest that for models defined on fractal subst
with a vanishing critical temperature,z could also be tem-
perature dependent. This has stimulated further deve
ments~such as generalized scaling theory@3,4#!, which pre-
dicts that for low temperaturesz}T21, due to a logarithmic
size dependence of energy barriers. However, a renorma
tion group analysis@5# found z to be independent ofT. The
dynamical scaling behavior of model systems defined
fractal substrates of zero critical temperature has been in
tigated @6,7# in the Ising model defined on the Sierpins
gasket, where the thermodynamic behavior can be exa
obtained @8#. This model presents interesting nontrivi
physical properties, mainly those concerned with its extra
lation to the thermodynamic limit. Monte Carlo simulation
results seem to confirm the generalized scaling theory
thermodynamic quantities with some reported quantita
deviations from the theoretically predicted coefficients@7#.

Recently, there has been a renewed interest in the stud
the dynamical behavior of model systems defined on fra
objects. The concept of self-organized criticality has p
vided a link between the widespread occurrence in natur
fractal structures and the phenomenon of 1/f noise@9#. Sev-
eral dynamical properties of fractal systems such as
random-walk scaling laws, reaction kinetics, and vibratio
excitations, among others, have been shown to depict
features not present on regular Euclidean lattices@10–12#.

Here, we study some important aspects of spin dynam
PRE 611063-651X/2000/61~2!/1227~5!/$15.00
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on fractal systems related to the damage-spreading ana
~see, for example, Refs.@13–24#!. This method consists o
monitoring the simultaneous time evolution of two initial
different microscopic configurations of the model and me
suring the fraction of corresponding sites where the s
variables are in different states. This fraction defines the t
damage. It is known that several model systems prese
dynamic phase transition, separating a chaotic region~where
the damage remains finite! and a frozen one~where the dam-
age heals!. Here, we will be particularly interested in study
ing the scaling behavior of the damage relaxation and d
age covering times and exploring their relationship with t
generalized scaling theory. Our numerical results show t
although the damage relaxation time follows the generali
dynamic scaling, the damage covering time depicts a lo
rithmic size dependence and therefore violates the dynam
scaling.

II. GENERALIZED SCALING FOR FRACTAL LATTICES

The generalized scaling, as applied to the Ising mode
a fractal lattice, is based on the fact that the relaxation ti
t(L,T) of a system of linear sizeL at a temperatureT is
determined by an Arrhenius law

t~L,T!5t0 exp@DE~L !/kBT#, ~1!

wheret0 is a time scale constant andDE(L) is the minimal
energy barrier that the system needs to flip from all spins
to all spins down@3,4,6,7#. Generalized scaling assumes th
a local quantity like the magnetizationM has to be dynami-
cally scaled as

M ~L,T,t !5M ~L/b,T8,t/V!. ~2!

Therefore, we have to rescale the time scale by a factoV
when the size of the lattice is rescaled by a factorb. The
renormalized temperatureT8 can be determined by a scalin
transformation procedure@8#.
1227 ©2000 The American Physical Society
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Henley showed@3,4# that the characteristic energy diffe
enceDE is given by

DE~L !/2J'Z ln L1C, ~3!

where Z is a constant that characterizes the fractal. Th
putting Eq. ~3! into Eq. ~1!, the leading behavior for low
temperatures (L!j) becomest(L,T)'t0L2ZK, where K
5J/kBT is the coupling constant. To reproduce the abo
predicted behavior, the generalized scaling requires the m
netization to present the dynamic scaling form in Eq.~3!,
with the rescaling of the relaxation time satisfying

t~L,K !5V~b,K !t~L/b,K8!. ~4!

Note that the temperature dependence of the rescaling fa
V characterizes the basic difference between ordinary
generalized dynamic scalings. Further, to reproduce the
rect low temperature behavior, the following ansatzV
5bf (K) is assumed, where the functionf (K) has the simple
low-temperature form

f ~K !5a0K1a11O~1/K !. ~5!

Taking b5L it is obtained that

t~L,K !5V~L,K !t8~1,K8!, ~6!

resulting in the leading behaviort(L,K)'La0K. Hence, the
linear coefficient off (k) is related to the geometric factorZ
by a052Z.

To calculate the value ofa0, we measureV5t/t8, con-
sidering systems of different sizes and temperatures.f (K) is
obtained by making the best linear fit to the plot of logb V
versusK, in the limit of K→`.

III. MODEL AND FORMALISM

The Hamiltonian of the Ising ferromagnet model wi
nearest-neighbor interactions is

FIG. 1. Sierpinski gasket with four generations. The base
sites are numbered in such a way that the central one has site
IS50.
n

e
g-

tor
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r-

H52J(
^ i , j &

SiSj , ~7!

whereJ.0 and^ i , j & denotes nearest-neighbor sites on t
Sierpinski gasket, as illustrated in Fig. 1. On this lattice,
geometric factorZ52/ln 2 andC54. The thermodynamic
properties of this system can be obtained numerically
implementing a standard Monte Carlo algorithm with sp
cific dynamical rules. In what follows, we will investigate
through a damage-spreading technique, some aspects re
to the relaxation to equilibrium when it is driven by a hea
bath dynamics. The damage technique is introduced as
lows: we take two system configurationsA and B which
differ from each other by a given set of spins which are p
in distinct states. The simultaneous temporal evolution of
two copies is performed using the same Monte Carlo ru
and the same random numbers~for the same sites on lattice
A andB). The Hamming distance is a measure of the dam
and is defined as the fraction of sites which have differ
spin orientations on system configurationsA andB, i.e.,

D~ t !5
1

2N K (
i

uSi
A~ t !2Si

B~ t !u L , ~8!

whereN is the total number of sites and the brackets sta
for an average over many samples~different initializations of
the random number generator!.

The present Monte Carlo~MC! simulation has started
with lattices of sizeL ~ranged fromL54 to L5128) at some
couplingK with all spins up in copyA and down in copyB,
corresponding to an initial damageD(0)51. We recorded
the damage per site as a function of timet, where each
Monte Carlo step per spin~MCS! represents a unit of time
We have also averaged over until 104 experiments, using
free boundary conditions in order to avoid the breakdown
hierarchy of the lattice. As this model is paramagnetic at a
finite temperature, the asymptotic equilibrium value of t
damage is zero~frozen phase!. We investigate its relaxation
properties by calculating two quantities: the nonlinear da
age relaxation time@t5*0

`D(t)dt#, and the time for all sites
to be undamaged at least once (tc). It should be stressed tha
the damage-spreading technique has been successfully

e
ex

FIG. 2. Semilogarithmic plot of thedamage~thicker line! and
magnetizationvs time~in MCS!. Notice that the signal of the dam
age is more stable than that of themagnetization. In this case, the
damage is more reliable for statistics due to fewer fluctuations.
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to determine the dynamical critical exponentz of the two-
and three-dimensional Ising model@22,25#.

IV. RESULTS

For simplicity, in all our results we will considerJ5kB
51. In Fig. 2, we plot the time evolution of the damage a
the magnetization. This figure shows that the magnetiza
fluctuations are larger when compared with that of the da
age, which presents a much smoother behavior makin
possible to get reasonably good statistical results. Beside
contrast with the magnetization, the damage becomes ze
we wait enough time, and remains null. We recall that, as
system presents no phase transition~except forT50 andL
→`), only an exponential decay is observed.

Figure 3 shows the relaxation timet as a function ofK
~inverse temperature! for three different values ofL. These
curves show that the slopes of logt versusK slowly grows
with L for low temperatures, confirming the predicted tren
For high temperatures~low K) the slopes appear to be th
same. Figure 4 shows the relaxation timet as a function ofL
for different temperatures.For low temperatures (L!j) the
data is consistent with the assumed dominant power-law
havior t.Lz with a temperature dependent exponent. Wh
L is increased, a downward curvature appears witht saturat-

FIG. 3. Semilogarithmic plot of the relaxation time vs inver
temperature for three different values ofL(L54,8,16). The curves
show that the slope of logt vs K depends onL for low tempera-
tures. In this caset is a power law of the formt;La0K.

FIG. 4. Relaxation timet vs L for different values ofT. We
observe two regimes: a high temperature one, wheret saturates,
and a low temperature one, where the curve seems to agree w
power law.
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ing for largeL as expected in the limitL@j, wheret}jz.
After calculatingt for a system of sizeL at a couplingK

the same procedure is repeated now fort8 in a system of size
L85L/b but at a couplingK8, calculated by a renormaliza
tion procedure withb52 @8# given by

exp~4K8!5
exp~8K !2exp~4K !14

exp~4K !13
. ~9!

The renormalization factorV is calculated by the relation
V5t/t8, wheret andt8 are the relaxation times in each o
the correspondent systems. A plot of logb V versusK appears
in Fig. 5 for renormalizations of systems withN542 (L
58) to N8515 spins (L854) and withN5123 (L516) to
N8542 spins (L858). The data collapse and the temper
ture dependence of log2V reinforces the validity of the gen
eralized scaling hypothesis. This figure is to be compa
with Fig. 5 of Ref.@7#. Looking closely, our result sugges
that in the range of temperatures investigated, a 1/K term in
the f (K) expansion seems to be a relevant correction to
leading linear behavior. We fit the data to the expression

f ~K !5a0K1a11a2 /K, ~10!

finding that the best nonlinear fit gives a value ofa055.7
60.1, which is in better agreement with Henley’s res

h a

FIG. 5. Plot of log2V vs K from L58 to L854 ~circles! and
from L516 toL858 ~squares! renormalizations. The solid line is a
fitting for the nonlinear functionf (K)5a0K1a11a2 /K, where
a052Z. The best fit gives the values ofa055.760.1, a1522.2
60.2 anda251.160.1.

FIG. 6. Average time~in MCS! for each site of lattice base line
(L516) to be undamaged~healed!. From bottom to top:T
51.5, 1.4, 1.3, and 1.2.
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(a0)H54/ln 255.77, than the former onea054.2 obtained
from a crude linear fit in the same temperature range@7#.

To have more insight into the system dynamics we h
also examined another characteristic time of evolution of
damage (tc) defined as the time for all sites to be unda
aged at least once@26#. To investigate the scaling propertie
of tc , we proceed in the same way done fort calculating
now Vc from tc andtc8 .

Figure 6 shows the average time~in MCS! for each site of
the lattice base line to be undamaged~or healed! at least once
~for L516). We notice that, when the temperature is d
creased, we have at least four well distinguishable charac
istic time scales. These curves have been averaged for4

samples. The corners of the gasket very soon become
damaged, as expected, since the sites at the corners ar
stable to fluctuations. From the fourth spin on, in the dir
tion to the center of the gasket~from the left or from the
right!, all spins become undamaged at the same time sc
In Fig. 7 we show thetc base line profile for distinct sizes. I
shows that the existence of four time scales persists for aL
with the inner sitesu i u<L/223 being undamaged almost
the same time despite a small regular oscillation. The p
ence of distinct characteristic times scales is a signature
possible scaling violation.

Figure 8 shows the total covering timetc / ln L versusL.
All curves saturate on a constant value showing that ther
only one regime withtc growing with lnL for all T. The
semilog plot of tc against the inverse of temperature

FIG. 7. Average time~in MCS! for each site of the lattice bas
line (L54,8,16,32 from the inside to the outside! to be undamaged
~healed!. Curves have been calculated atT51.2 and have been
averaged over 104 samples.

FIG. 8. Log-log plot of (tc / log L) vs L. They saturate asT
→` showing thattc grows with logL for all T.
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shown in Fig. 9. From these curves, we observe that
slope of logtc versusK is not L dependent contrary to th
behavior oft ~see Fig. 3!. The results in Figs. 8 and 9 indi
cate thattc is not a power law, as observed for the relaxati
time t in the low temperature regime. The logarithmic si
dependence of the damage covering time is similar to the
observed to hold for the energy barriers.

Figure 10 shows the logarithm plot ofVc versusK for
three different renormalizations (L/L8532/16, 16/8, and
8/4). In contrast with the results obtained from the relaxat
time, the scaling factor of the damage lattice covering ti
tc appears to depend not only onK and b but also on the
proper system sizeL. In other words,tc does not satisfy the
generalized dynamic scaling, specially in the low tempe
ture regime where the difference of the characteristic dam
covering time scales is more proeminent. It is interesting
notice that all curves show that there is a crossover aro
T52. This temperature is close to a characteristic tempe
ture of the system that has been reported some time ago@27#,
which relates to the maximum of the specific heat of t
system ~Schottky peak anomaly! occurring at T>2J/K.
Similar results@28# were found for the Ising model on th
three-dimensional Sierpinski gasket withT>3J/K.

V. CONCLUSION

We have studied the spin dynamics on a fractal lattice~the
Sierpinski gasket! through a Monte Carlo damage spreadi

FIG. 9. Semilogarithmic plot of the covering time against i
verse temperature for three different values ofL(L54,8,32). These
curves show that the slope of logtc vs K does not depend onL.

FIG. 10. Semilogarithm plot ofVc5tc /tc8 vs K for three dif-
ferent renormalizations (L/L8532/16, 16/8, and 8/4). The system
shows no scaling oftc especially for low temperatures. All curve
show that there is a crossover aroundT52.
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technique using heat-bath dynamics. The damage relaxa
time was found to follow a generalized dynamic scaling
proposed by Henley@3,4#. Accurate data for the renormaliza
tion scaling factor of the relaxation time provide a prec
estimate ofz5a0K, with a055.760.1 in agreement with the
scaling prediction and substantially better than previo
Monte Carlo results. Further, we also investigated the t
damage covering time, which was found not to obey a s
ing form. We conjecture that the breakdown of dynam
scaling of the covering time is a universal characteristic
et
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.
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f

scale invariant systems. At present we are investigating
validity of this conjecture on fractal lattices that presen
finite critical temperature for which a standard dynamic sc
ing of the relaxation time is expected to hold.
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